

Executing Your Measurement and Analysis Plans

Presented by: Ella Page

Software Process Improvement (SPI) Project

Purpose and Objectives

- Purpose: To help you understand how to execute a measurement and analysis plan
- Objective After this session you should understand:
 - The process steps for implementing your measurement and analysis plan
 - The three key components to execution: analysis, impact, and corrective action
 - Approaches to measurement and analysis of the the five measurement areas required by NPR 7150.2

The Measurement Process* Steps for Planning

The steps for planning measurement and analysis activities were addressed last week:

- 1. Establish measurement objectives
- 2. Identify the essential measurement analyses that support these objectives
- 3. Specify the measures to be collected
- 4. Specify your data collection and storage procedure
- 5. Specify your analysis procedure

^{*}http://software.gsfc.nasa.gov/AssetsApproved/PA3.4.doc

The Measurement Process* Steps for Collecting and Analyzing Data

This week we'll cover the steps for executing the measurement and analysis plan:

- 6. Collect measurement data
- 7. Analyze collected data
- 8. Store collected data and analysis results
- 9. Communicate results to stakeholders

^{*}http://software.gsfc.nasa.gov/AssetsApproved/PA3.4.doc

M&A Process Step 6: Collecting Data

- One of the steps last week included development of a Data Collection and Storage Procedure
- Follow that procedure, which defines
 - Who is responsible for collecting and providing measures
 - How frequently to collect the measurements
- Collect the data
 - Responsible person sets up or installs tools (SPI tools have user's guides describing setup, data definitions, updating and reporting)
 - Team Lead collects initial milestone data

M&A Process Step 7: Analyze Collected Data

- Do a quick analysis when data is collected
 - For example, biweekly collection of progress data
 - Probe more if there is a potential problem,
 - If there is a serious issue, don't wait to address it
- Do a full analysis according to the schedule defined in your Analysis and Reporting Procedure
 - Schedule analysis to occur at least monthly, but frequency can vary with project phase
 - If there is a serious issue, don't wait to address it
- Document analysis results
 - Per your Analysis and Reporting Procedure, normally monthly in the Branch Status Review (BSR)
 - When unscheduled analysis leads to corrective action

M&A Process Step 8: Store Collected Data and Analysis

- **■** Follow Collection and Storage Procedure
 - Person responsible for collecting data should check it for completeness and accuracy
- Put data where your Data Management List (DML) says it should go
 - Follow a file naming convention that includes dates
 - Store successive versions, normally monthly

M&A Process Step 9: Communicate Results

- Report the results of measurement analyses to relevant stakeholders on a timely basis
- Assist stakeholders in understanding the results of analysis
 - Ensure that results are interpreted correctly by all concerned
- Report regularly
 - At Branch Status Reviews
 - At milestone reviews
 - Whenever you need to communicate an issue to stakeholders between scheduled reviews

SPI Tools to Assist You in Analyzing Measures

- Requirements Metrics Tool
 - Requirements Growth
 - Requirements Volatility
 - Delivered Functionality by Build
- Problem Report Tool
 - Software Quality
- Measurement Summary Tool
 - Project Characteristics
 - Milestone Data
 - Size Estimates
 - Notes

- Staffing tool
 - Staffing Data
 - Process Effort
- Schedule tool
 - Overall Progress
- Point Counting Tool
 - Detailed Progress
- Risk Tool
- Action Item Tool

^{*}http://software.gsfc.nasa.gov/tools.cfm

3 Key Concepts to Analyzing Measures

Analysis

- Look to see if behavior indicated by data is within expectations.
- If not, examine what could be causing anomalies
- Cross check with other data
- Explain what data is saying, good or bad
- Separate real trends from noise

Impact

- Quantify likely effects on cost, schedule, quality, risk
- "No impact" is a legitimate answer
- Take credit when things are going well

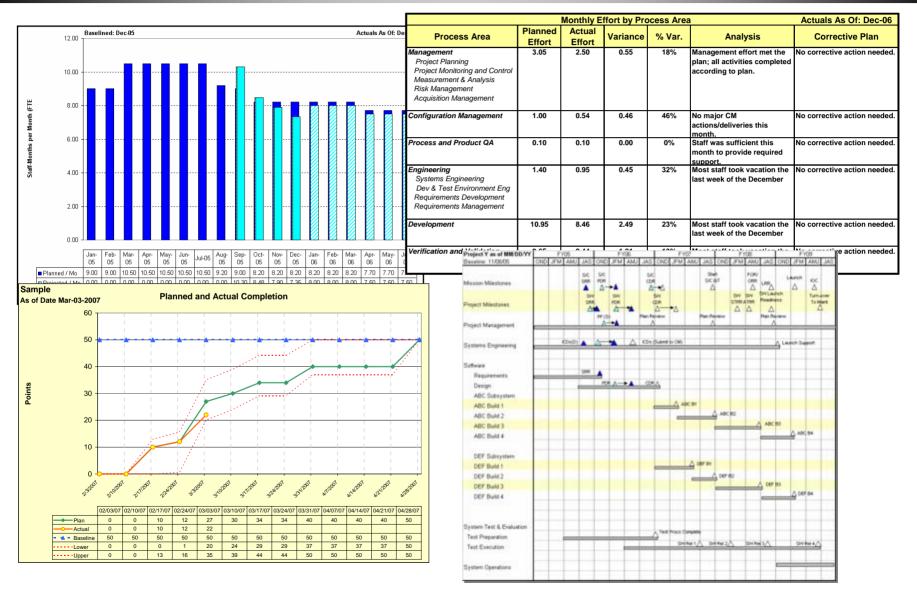
Corrective Action

- Describe how you will address issues
- "Monitor risk" is a legitimate answer
- "None needed" is a legitimate answer

Review: NPR 7150.2 Measurement Requirements for Class B Projects

- Required measurement areas for all software projects
 - Software Progress Tracking
 - Software Functionality
 - Software Quality
 - Software Requirements Volatility
 - Software Characteristics
- Additional NPR requirements for Class A and B projects
 - Process monitoring as required for CMMI Capability Level 2
 - Data specified for Software Inspection/Peer Review Report
 - Data collected "on a CSCI basis"

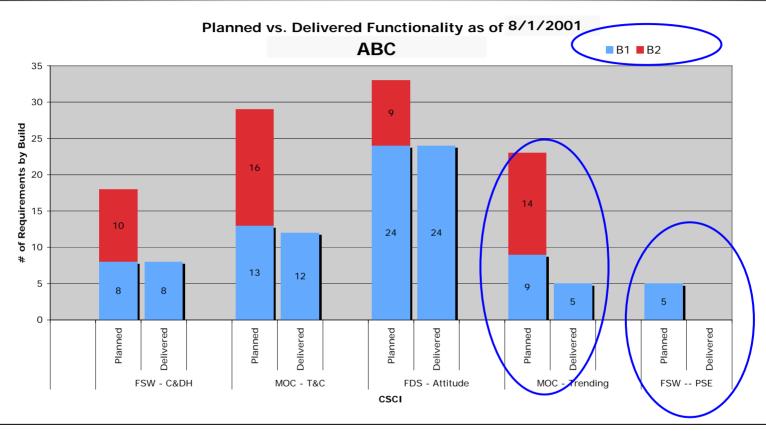
Analyzing Software Progress Measures



- Analyze your software progress
 - Determine if activities are being accomplished at the rate planned
 - Determine if resources are being used at the rate planned
 - Assess why the variance is occurring
 - Do you have the resources you planned for?
 - Have you used more resources than planned to get the work done?
 - Are your tools, skill level, training, complexity of work, etc., as planned
- Data to check during the analysis
 - The schedule (with point counts) and the staffing for consistency with each other and the plan
- Consider the Potential Impact
 - If one or more activities are behind schedule or over cost will it affect other areas ... or the ultimate delivery?
 - Is variance temporary, ongoing, or getting worse?
- Develop a Corrective Action Plan
 - Look for ways to improve productivity (process, training, tools, equipment, or skill level)
 - Consider adjusting resources ... adding more or reallocating the ones you have

Software Progress Tracking Examples

Analyzing Software Functionality Measures



- Analyze your software functionality
 - If delivering more than planned, take credit
 - If delivering less than planned, figure out why
 - Build was delivered early because stakeholder needed it
 - Build was more complex than expected
 - One or more requirements were TBD or pending clarification
- Data to check during the analysis
 - Point counts from the Point Counting Tool (if behind in one place are you ahead somewhere else?)
 - Scheduled delivery dates from a schedule tool
 - Requirement-to-build mapping, and requirement test status
- Consider the Potential Impact
 - Will release (or overall) cost or schedule be affected?
 - Will release (or overall) quality from the Customer viewpoint be affected?
- Develop a Corrective Action Plan
 - Consider what you need to add the planned functionality
 - Optionally, adjust the build plan to move functionality to other builds

Functionality By Build Example

Analysis: Build 1 for the trending system is missing capabilities due to requirements TBDs.

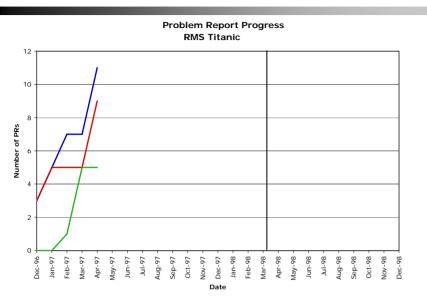
PSE Build 1 is scheduled for delivery on 9/1/01.

Impact: None -- developers worked on Build 2 capabilities for all subsystems while awaiting

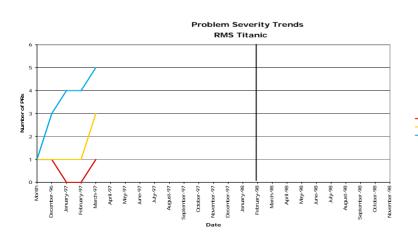
resolution of TBDs

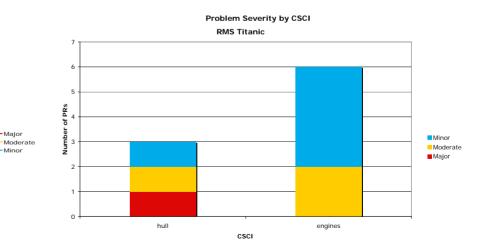
Corrective Action: Monitor to assure remaining TBD is resolved

Analyzing Software Quality Measures


- Analyze software quality through errors, defects, and problem reports (PRs)
 - Current count and severity status show where you stand now and trends show where you're headed
 - Assess the cause of the errors ... inadequate requirement understanding, erroneous design, coding errors, etc.
- Data to check during the analysis
 - Where you are in the test phase
 - Peer review defect metrics versus PRs
- Consider the Potential Impact
 - Will a growing number of open PRs affect the schedule or quality?
 - Will you have to bring on more people to fix problems?
- Develop a Corrective Action Plan
 - Consider improved peer reviews to catch errors earlier
 - Consider training staff or moving in more senior people
 - Are there tools that could help find problems earlier?




Problem Report Tool Example


-Submitted Accepted

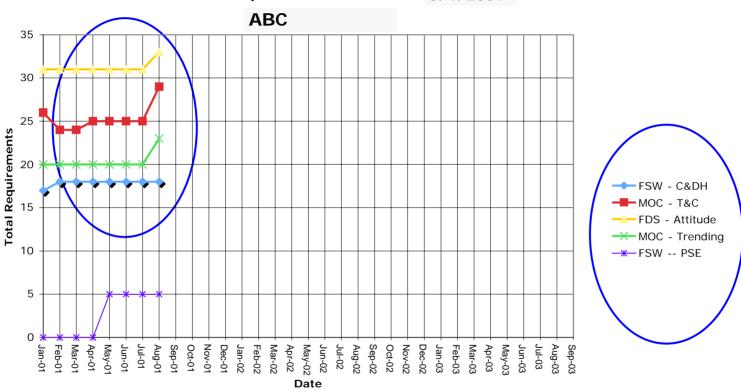
- Major

Analyzing Requirements Volatility Measures, 1 of 2

- Analyze requirement volatility through metrics on growth, uncertainties (TBDs), and change
 - What metrics are higher than expected
 - Why are they higher?
 - Unstable "mission" environment
 - Incomplete requirements at the start
 - Lack of team understanding of requirements
 - The "bell and whistle" syndrome
- Data to check during the analysis
 - Planned and actual effort for "Engineering" process
 - Problem report data from the Problem Report Tool
- Consider the Potential Impact
 - Expanding requirements base may increase system complexity (interfaces, etc.)
 - Changing requirements may mean extra work or rework
 - "TBDs" mean uncertainty in what you really have to do ... and how long it will take

Analyzing Requirements Volatility Measures, 2 of 2

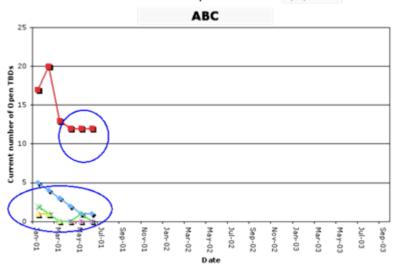
Develop a Corrective Action Plan


- Try to improve requirement analysis and documentation
- Implement a peer review process for requirements
- Tighten CM / CCB control
- Reschedule to implement more stable subsystems first
- For changes late in the life cycle, consider rearranging test schedules
- Adjust your plans to correct any requirement inconsistencies with existing plans
 - Add staff
 - Extend schedule,
 - Postpone requirements

Requirements Growth Example

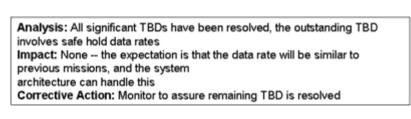
Analysis: Requirements growth is in line with pre-CDR growth for previous projects

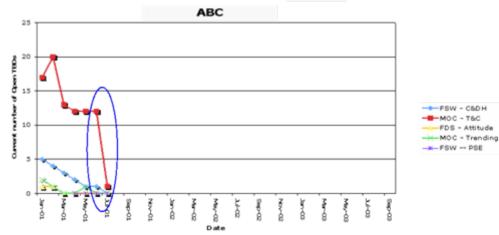
Impact: None


Corrective Action: None

Requirements "TBD" Example: Before and After Corrective action

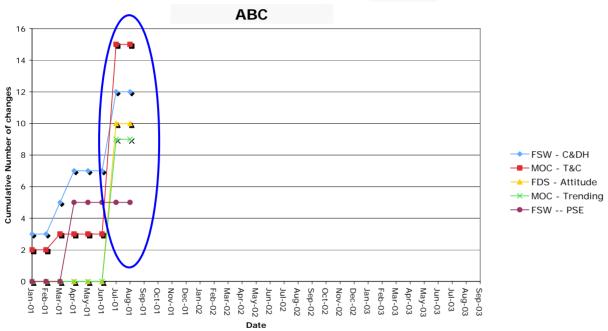
TBD Requirements as of 6/1/2001




Analysis: TBDs for MOC Telemetry & Command system are not being resolved due to understaffing **Impact:** As this subsystem routes data from all other subsystems, T & C development can't proceed until these TBDs are resolved. We estimate a one-month delay to do this.

Corrective Action: T & C expert Gilbert Arenas will be added to the team temporarily to resolve these TBDs. This is expected to be a full time assignment for one month.

TBD Requirements as of 8/1/2001



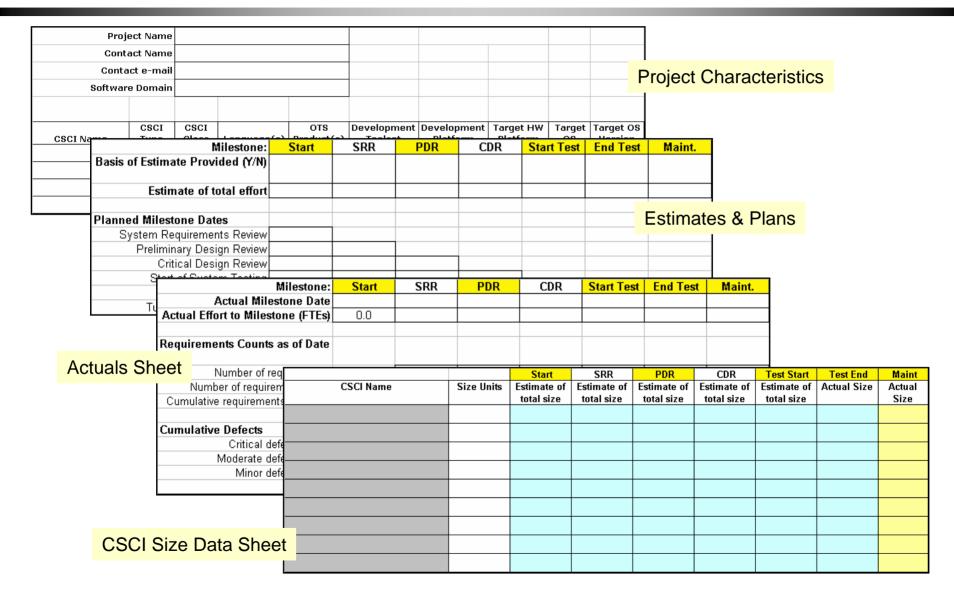
Requirements Change Example After "TBD" Corrective Action

Analysis: This is a higher than usual number of changes; however it is due to extra effort to resolve TBDs

Impact: None

Corrective Action: None

Collecting Software Characteristics Data at Milestones



- For projects already in progress
 - Reconstruct data from documentation, review materials, status reports ...
 - ... don't make it up, but find what you can
- Organizational measurement approach
 - Data is kept anonymous
 - SPI will use data for cross-project analysis of
 - Estimation accuracy: to determine how GSFC projects estimate cost and schedule
 - Productivity: to assess actual productivity rates and improve cost estimates
 - Error rates, requirements changes: to provide a basis of comparison when analyzing data

Milestone Data (from Measurement Summary Tool)

Acquisition Considerations

- Acquisition measurement responsibilities depend on division of work
 - Example 1 contractor is doing all technical work
 - Contractor manages its work with full set of metrics
 - Government person monitors contractor analysis
 - Government person collects and analyzes status on government acquisition and monitoring activities
 - Example 2 government is providing requirements and running acceptance tests
 - Contractor manages its work with full set of metrics
 - Government person monitors contractor analysis
 - Government person collects and analyzes government process effort, adding requirements engineering and test effort
 - Government person collects and analyzes metrics on functionality and requirements volatility
- Collect Measurement Summary Data from contractor

Measurement and Analysis Artifacts

- Metrics generated by project-specific tools (e.g., DOORS, Bugzilla,...)
- Metrics in SPI tools* including, Staffing Tool, Schedule Tool, Point Counting Tool, Requirements Metrics Tool, Problem Report Tool, Measurement Summary Tool
- Monthly Analyses
 - In spreadsheets for each analysis period
 - In BSR packages

^{*}http://software.gsfc.nasa.gov/tools.cfm

Measurement and Analysis Summary, 1 of 2

When planning for measurement ...

- Measurement is a good management practice
 - Helps uncover unpleasant surprises early (when you might stand a chance of recovery)
- Select measures linked to your project's goals
 - SPI measures address most common objectives
 - SPI tools help collect, store, analyze and report with respect to these objectives (And meet NPR 7150.2 and CMMI requirements, too!)
- Define measurement procedures as part of planning
 - Makes responsibilities clear for who provides, collects, stores, analyzes and presents data.
- SPI assets are your starting point, not your final plan

Measurement and Analysis Summary, 2 of 2

When executing measurement activities ...

- Use procedures written during planning phase
 - Data Collection and Storage Procedure
 - Analysis and Reporting Procedure
- Collect, analyze and report at appropriate rates
 - May collect more frequently than analyzed
 - May analyze more frequently than reported
- Analyze and report data to highlight problems
 - If there is no variance, assess whether there should be
 - Assess the cause and quantify impact of variances
 - Trust the data ... a trend doesn't change unless something else changes
 - Some people don't believe the data and go with their "gut" feel ... and get into trouble
 - Implement corrective actions to address issues the data uncovers

Questions?

Acronyms

- BSR Branch Status Review
- CCB Configuration Control Board
- CDR Critical Design Review
- CM Configuration Management
- CMMI Capability Maturity Model Integrated
- CSCI Computer Software Configuration Item
- DML Data Management List
- NPR NASA Procedural Requirement
- PR Problem Report
- SPI Software Process Improvement
- TBD To Be Determined